Prospects of Graphene-Based Materials in E-Fuel Applications

Authors

DOI:

https://doi.org/10.25159/3005-2602/16430

Keywords:

application, efficiency, e-fuels, graphene, lifespan, performance, prospects

Abstract

In recent years, research studies on e-fuels such as e-methane, e-kerosene, e-methane, e-ammonia, e-diesel and e-methanol have engrossed the interest of scientists because of their unique features. These fuels are in vapour or molten phase that are formed from renewable energy sources (such as solar, wind and water) or decarbonised electricity. Recent research studies on the fabrication and applications of e-fuels have advanced significantly owing to the integration of graphene and its derivatives with special chemical and physical characteristics in their various working principles and applications. The most recent developments in the fabrication and applications of materials that are graphene-based e-fuels include the integration of graphene in electrodes and electrolytes of the e-fuel devices. E-fuels are also used in the decarbonisation of our environment since anthropogenic carbon (IV) oxide (CO2) and carbon (II) oxide (CO) emitted from various sources will be reduced; consequently reducing greenhouse effects. This review aims at exploring techniques of using graphene and its derivatives in enhancing the performance and elongating the lifespan of e-fuel devices.

Author Biographies

Hope E. Nsuade, University of Nigeria

Nil

Joseph N. Anosike, University of Nigeria

Nil

Imosobomeh L. Ikhioya, University of Nigeria

Nil

Chimezie U. Eze, University of Nigeria

Nil

Miletus O. Duru, University of Ilorin

Nil

Joseph N. Aniezi, University of Agriculture and Environmental Sciences, Umuagwo, Imo State, Nigeria

Nil

Ekwevugbe Omugbe, University of Agriculture and Environmental Sciences, Umuagwo, Imo State, Nigeria

Nil

Chinonso Mbamara, University of Agriculture and Environmental Sciences, Umuagwo, Imo State, Nigeria

Nil

Ugochukwu C Elejere, University of Nigeria

Nil

Abdoulaye Diallo, Cheikh Anta Diop University, Boulevard Habib Bourguiba, 5036, Dakar-Fann, Senegal

Nil

Ishaq Ahmad, Quaid-i-Azam University

Nil

References

[1] S. Brynolf, M. Taljegard, M. Grahn and J. Hansson, “Electrofuels for the transport sector : A review of production costs,” Renew. Sust. Energy Rev., vol. 81, no. 2, pp. 1887–1905, Jan. 2018, doi: 10.1016/j.rser.2017.05.288. DOI: https://doi.org/10.1016/j.rser.2017.05.288

[2] R. M. Obodo et al., “Performance optimization of bimetallic Co3(PO4)2@Ni3(PO4)2 electrodes for supercapacitive applications,” J. Mater. Sci: Mater. Electron., vol. 35, p. 351, Feb. 2024, doi: 10.1007/s10854-024-12079-5. DOI: https://doi.org/10.1007/s10854-024-12079-5

[3] R. M. Obodo et al., “Evaluation of 8.0 MeV Carbon (C2+) Irradiation Effects on Hydrothermally Synthesized Co3O4−CuO−ZnO@GO Electrodes for Supercapacitor Applications,” Electroanalysis, vol. 32, no. 12, pp. 2958–2968, Dec. 2020, doi: 10.1002/elan.202060382. DOI: https://doi.org/10.1002/elan.202060382

[4] M. Maaza et al., “Peculiar Size Effects in Nanoscaled Systems,” Nano-Horizons, vol. 1, no. 1, pp. 1–36, Jul. 2022, doi: 10.25159/NanoHorizons.9d53e2220e31. DOI: https://doi.org/10.25159/NanoHorizons.9d53e2220e3

[5] U. R. Farooqui, A. L. Ahmad and N. Hamid, “A graphene oxide: A promising membrane material for fuel cells,” Renew. Sustain. Energy Rev., vol. 82, no. 1, pp. 714–733, Feb. 2018, doi: 10.1016/j.rser.2017.09.081. DOI: https://doi.org/10.1016/j.rser.2017.09.081

[6] A. C. Nkele et al., “Recent Advances in Materials for Supercapacitors,” Nano-Horizons, vol. 1, no. 1, pp. 1–32, Sept. 2022, doi: 10.25159/NanoHorizons.53db1f5bd625. DOI: https://doi.org/10.25159/NanoHorizons.53db1f5bd625

[7] S. R. Chowdhury and T. Maiyalagan, “Enhanced Electro-catalytic Activity of Nitrogen-doped Reduced Graphene Oxide Supported PdCu Nanoparticles for Formic Acid Electro-oxidation,” International Journal of Hydrogen Energy, vol. 44, no. 29, pp. 14808–14819, Jun. 2019, doi: 10.1016/j.ijhydene.2019.04.025. DOI: https://doi.org/10.1016/j.ijhydene.2019.04.025

[8] R. M. Obodo et al., “Annealing optimization of graphitized Co3O4@CuO@NiO composite electrodes for supercapacitor applications,” Energy Storage, vol. 4, no. 5, p. e347, Oct. 2022, doi: 10.1002/est2.347. DOI: https://doi.org/10.1002/est2.347

[9] R. M. Obodo et al., “Enhancement of synergistic effects of Cu2O@MnO2@NiO using Sarcophrynium Brachystachys leaf extract for supercapacitor electrode application,” Next Mater., vol. 5, p. 100244, Oct. 2024, doi: 10.1016/j.nxmate.2024.100244. DOI: https://doi.org/10.1016/j.nxmate.2024.100244

[10] R. M. Obodo et al., “Exploring dual synergistic effects of CeO2@ZnO mediated sarcophrynium brachystachys leaf extract nanoparticles for supercapacitor electrodes applications,” Hybrid Adv., vol. 5, p. 100143, Apr. 2024, doi: 10.1016/j.hybadv.2024.100143. DOI: https://doi.org/10.1016/j.hybadv.2024.100143

[11] M. Liu, R. Zhang and W. Chen, “Graphene-Supported Nanoelectrocatalysts for Fuel Cells: Synthesis, Properties, and Applications,” Chem. Rev., vol. 114, no. 10, pp. 5117–5160, Mar. 2014, doi: 10.1021/cr400523y. DOI: https://doi.org/10.1021/cr400523y

[12] R. M. Obodo, A. C. Nwanya, I. Ahmad, M. A. Kebede and F. I. Ezema, “Carbon Derivatives in Performance Improvement of Lithium-Ion Battery Electrodes,” in Electrode Materials for Energy Storage and Conversion, M. A. Kebede and F. I. Ezema, Eds., Boca Raton, Florida, US: CRC Press, 2021, pp. 23–33. DOI: https://doi.org/10.1201/9781003145585-2

[13] P. H. Huang, J. K. Kuo, W. Z. Jiang and C. B. Wu, “Simulation analysis of hydrogen recirculation rates of fuel cells and the efficiency of combined heat and power,” Int. J. Hydrogen Energy, vol. 46, no. 31, pp. 16823–16835, May 2020, doi: 10.1016/j.ijhydene.2020.08.010. DOI: https://doi.org/10.1016/j.ijhydene.2020.08.010

[14] R. M. Obodo, A. C. Nwanya, I. S. Ike, I. Ahmad and F. I. Ezema, “Role of Carbon Derivatives in Enhancing Metal Oxide Performances as Electrodes for Energy Storage Devices,” in Chemically Deposited Nanocrystalline Metal Oxide Thin Films, F.I. Ezema, C. D. Lokhande and R. Rose, Eds., Cham, US: Springer, Jun. 2021, pp. 469–488, doi: 10.1007/978-3-030-68462-4_18. DOI: https://doi.org/10.1007/978-3-030-68462-4_18

[15] A. Ghosh and A. Verma, “Carbon-Polymer Composite Bipolar Plate for HT-PEMFC,” Fuel Cells, vol. 14, no. 2, pp. 259–265, Apr. 2014, doi: 10.1002/fuce.201300186. DOI: https://doi.org/10.1002/fuce.201300186

[16] R. M. Obodo et al., “Tailoring the coexistence of Ce(PO4)@Mn3(PO4)2/MXene for supercapacitive application,” Physica Scripta, vol. 99, no. 12, pp. 125904, Oct. 2024, doi: 10.1088/1402-4896/ad881a. DOI: https://doi.org/10.1088/1402-4896/ad881a

[17] R. J. Conrado, C. A. Haynes, B. E. Haendler and E. J. Toone, “Electrofuels: A New Paradigm for Renewable Fuels,” in Advanced Biofuels and Bioproducts, J. Lee, Ed., New York, NY: Springer, 2013, pp. 1037–1064, doi: 10.1007/978-1-4614-3348-4_38. DOI: https://doi.org/10.1007/978-1-4614-3348-4_38

[18] S. Li, C. Cheng and A. Thomas, “Carbon-Based Microbial-Fuel-Cell Electrodes: From Conductive Supports to Active Catalysts,” Adv. Mater., vol. 29, no. 8, p. 1602547, Feb. 2017, doi: 10.1002/adma.201602547. DOI: https://doi.org/10.1002/adma.201602547

[19] J. O. Jensen, A. P. Vestbø, Q. Li and N. J. Bjerrum, “The energy efficiency of onboard hydrogen storage,” J. Alloys Compd, vol. 446–447, pp. 723–728, Oct. 2007, doi: 10.1016/j.jallcom.2007.04.051. DOI: https://doi.org/10.1016/j.jallcom.2007.04.051

[20] R. M. Obodo et al., “Investigating the dual synergistic amalgamation of CeO2@WO3/GO electrodes for supercapacitor application,” Energy Storage, vol. 6, no. 5, p. e70020, Aug. 2024, doi: 10.1002/est2.70020. DOI: https://doi.org/10.1002/est2.70020

[21] J. Xia et al., “High-performance anode material based on S and N co-doped graphene/iron carbide nanocomposite for microbial fuel cells,” J. Power Sources, vol. 512, p. 230482, Nov. 2021, doi: 10.1016/j.jpowsour.2021.230482. DOI: https://doi.org/10.1016/j.jpowsour.2021.230482

[22] B. K. Kakati, A. Ghosh and A. Verma, “Efficient composite bipolar plate reinforced with carbon fiber and graphene for proton exchange membrane fuel cell,” Int. J. Hydrogen Energy, vol. 38, no. 22, pp. 9362–9369, Jul. 2012, doi: 10.1016/j.ijhydene.2012.11.075. DOI: https://doi.org/10.1016/j.ijhydene.2012.11.075

[23] R. M. Obodo et al., “Effects of copper ion irradiation on CuyZn1-2y-xMny/GO supercapacitive electrodes,” J. Appl. Electrochem., vol. 51, pp. 829–845, Mar. 2021, doi: 10.1007/s10800-021-01543-3. DOI: https://doi.org/10.1007/s10800-021-01543-3

[24] H. Su and Y. H. Hu, “Recent advances in graphene-based materials for fuel cell applications,” Energy Sci. Eng., vol. 9, no. 7, pp. 958–983, Jul. 2020, doi: 10.1002/ese3.833.

[25] X. Jiang and L. T. Drzal, “Exploring the potential of exfoliated graphene nanoplatelets as the conductive filler in polymeric nanocomposites for bipolar plates,” J. Power Sources, vol. 218, pp. 297–306, Nov. 2012, doi: 10.1016/j.jpowsour.2012.07.001. DOI: https://doi.org/10.1016/j.jpowsour.2012.07.001

[26] R. M. Obodo et al., “Radiations Induced Defects in electrode materials for energy storage devices,” Radiat. Phys. and Chem., vol. 191, p. 109838, Feb. 2022, doi: 10.1016/j.radphyschem.2021.109838. DOI: https://doi.org/10.1016/j.radphyschem.2021.109838

[27] A. Iwan, M. Malinowski and G. Pasciak, “Polymer fuel cell components modified by graphene: Electrodes, electrolytes and bipolar plates,” Renew. Sustain. Energy Rev., vol. 49, pp. 954–967, Sept. 2015, doi: 10.1016/j.rser.2015.04.093. DOI: https://doi.org/10.1016/j.rser.2015.04.093

[28] H. Huang et al., “Graphene Nanoarchitectonics: Recent Advances in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction,” Adv. Mater., vol. 31, no. 48, p. e1903415, Nov. 2019, doi: 10.1002/adma.201903415. DOI: https://doi.org/10.1002/adma.201903415

[29] B. C. H. Steele and A. Heinzel, “Materials for fuel-cell technologies,” Nature, vol. 414, pp. 345–352, Nov. 2001, doi: 10.1038/35104620. DOI: https://doi.org/10.1038/35104620

[30] X. Zhou, J. Qiao, L. Yang and J. Zhang, “A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions,” Adv. Energy Mater., vol. 4, no. 8, p. 1301523, Jun. 2014, doi: 10.1002/aenm.201301523. DOI: https://doi.org/10.1002/aenm.201301523

[31] Y. Zhu et al., “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Adv. Mater., vol. 22, no. 35, pp. 3906–3924, Sept. 2010, doi: 10.1002/adma.201001068. DOI: https://doi.org/10.1002/adma.201001068

[32] S. Navalon, A. Dhakshinamoorthy, M. Alvaro and H. Garcia, “Carbocatalysis by Graphene-Based Materials,” Chem. Rev., vol. 114, no. 12, pp. 6179–6212, May 2014, doi: 10.1021/cr4007347. DOI: https://doi.org/10.1021/cr4007347

[33] S. S. Siwal, S. Thakur, Q. B. Zhang and V. K. Thakur, “Electrocatalysts for electrooxidation of direct alcohol fuel cell: Chemistry and applications,” Mater. Today Chem., vol. 14, p. 100182, Dec. 2019, doi: 10.1016/j.mtchem.2019.06.004. DOI: https://doi.org/10.1016/j.mtchem.2019.06.004

[34] J. Bai, D. Liu, J. Yang and Y. Chen, “Nanocatalysts for Electrocatalytic Oxidation of Ethanol,” ChemSusChem, vol. 12, no. 10, pp. 2117–2132, May 2019, doi: 10.1002/cssc.201803063. DOI: https://doi.org/10.1002/cssc.201803063

[35] R. Yadav, A. Subhash, N. Chemmenchery and B. Kandasubramanian, “Graphene and Graphene Oxide for Fuel Cell Technology,” Ind. Eng. Chem. Res., vol. 57, no. 29, pp. 9333–9350, Jun. 2018, doi: 10.1021/acs.iecr.8b02326. DOI: https://doi.org/10.1021/acs.iecr.8b02326

[36] R. S. Singh, A. Gautam and V. Rai, “Graphene-based bipolar plates for polymer electrolyte membrane fuel cells,” Front. Mater. Sci., vol. 13, no. 3, pp. 217–241, Sept. 2019, doi: 10.1007/s11706-019-0465-0. DOI: https://doi.org/10.1007/s11706-019-0465-0

[37] R. M. Obodo et al., “Probing the performance of Co-precipitated Co3(PO4)2@W3(PO4)4/GO electrodes for supercapacitor application,” Mater. Chem. Phys., vol. 328, p. 129906, Dec. 2024, doi: 10.1016/j.matchemphys.2024.129906. DOI: https://doi.org/10.1016/j.matchemphys.2024.129906

[38] J. Mergel, M. Carmo and D. Fritz, “Status on Technologies for Hydrogen Production by Water Electrolysis,” in Transition to Renewable Energy Systems, D. Stolten and V. Scherer, Eds., Riley, 2013, ch. 22. pp. 423–450, doi: 10.1002/9783527673872.ch22. DOI: https://doi.org/10.1002/9783527673872.ch22

[39] J. Vergara, C. McKesson and M. Walczak, “Sustainable energy for the marine sector,” Energy Policy, vol. 49, pp. 333–345, Oct. 2012, doi: 10.1016/j.enpol.2012.06.026. DOI: https://doi.org/10.1016/j.enpol.2012.06.026

[40] F. Mohseni, Power to Gas- Bridging Renewable Electricity to the Transport Sector Technology. Sweden: KTH Royal Institute of Stockholm, 2012.

[41] T. Maria, B. Selma, H. Julia, H. Roman, G. Maria and A. Karin, Electrofuels—A Possibility for Shipping in a Low Carbon Future? Sweden: Swedish Environmental Research Institute, Stockholm, 2015.

[42] D. Wen, “Nanofuel as a potential secondary energy carrier,” Energy Environ. Sci, vol. 3, no. 5, pp. 591–600, Feb. 2010, doi: 10.1039/b906384f. DOI: https://doi.org/10.1039/b906384f

[43] Y. Jiao, Y. Zheng, M. Jaroniec and S. Z. Qiao, “Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions,” Chem. Soc. Rev., vol. 44, no. 8, pp. 2060–2086, Feb. 2015, doi: 10.1039/C4CS00470A. DOI: https://doi.org/10.1039/C4CS00470A

[44] Q. Li, R. Cao, J. Cho and G. Wu, “Nanocarbon Electrocatalysts for Oxygen Reduction in Alkaline Media for Advanced Energy Conversion and Storage,” Adv. Eng. Mater., vol. 4, no. 6, p. 1301415, Apr. 2014, doi: 10.1002/aenm.201301415. DOI: https://doi.org/10.1002/aenm.201301415

[45] L. Juha, “E-Fuel project is a collaborative act towards sustainable transportation fuels,” 7 July 2021. Accessed: 29 March 2024. [Online]. Available: https://www.e-fuel.fi/about/

[46] J. Liu, Y. Qiao, C. X. Guo, S. Lim, H. Song and C. M. Li, “Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells,” Bioresour. Technol., vol. 114, pp. 275–280, Jun. 2012, doi: 10.1016/j.biortech.2012.02.116. DOI: https://doi.org/10.1016/j.biortech.2012.02.116

[47] G. Reiter and J. Lindorfer, “Evaluating CO2 sources for power-to-gas applications—A case study for Austria,” J. CO2 Util., vol. 10, pp. 40–49, June 2015, doi: 10.1016/j.jcou.2015.03.003.

[48] P. Madejski, K. Chmie, N. Subramanian and T. Kuś, “Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies,” Energies, vol. 15, no. 3, p. 887, 2022, doi: 10.3390/en15030887. DOI: https://doi.org/10.3390/en15030887

[49] K. Damen, M. van Troost, A. Faaij and W. Turkenburg, “A comparison of electricity and hydrogen production systems with CO2 capture and storage—Part B: Chain analysis of promising CCS options,” Prog. Energy Combust. Sci., vol. 33, no. 6, pp. 580–609, Dec. 2007, doi: 10.1016/j.pecs.2007.02.002. DOI: https://doi.org/10.1016/j.pecs.2007.02.002

[50] T. Kuramochi, A. Ramírez, W. Turkenburg and A. Faaij, “Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes,” Prog. Energy Combust. Sci., vol. 38, pp. 87–112, Feb. 2012, doi: 10.1016/j.pecs.2011.05.001. DOI: https://doi.org/10.1016/j.pecs.2011.05.001

[51] G. Reiter and J. Lindorfer, “Evaluating CO2 sources for power-to-gas applications–A case study for Austria,” J. CO2 Util., vol. 10, pp. 40–49, Jun. 2015, doi: 10.1016/j.jcou.2015.03.003. DOI: https://doi.org/10.1016/j.jcou.2015.03.003

[52] J. Zhang and L. Dai, “Nitrogen, Phosphorus, and Fluorine Tri-doped Graphene as a Multifunctional Catalyst for Self-Powered Electrochemical Water Splitting,” Angew. Chem. Int. Ed. Engl., vol. 55, no. 42, pp. 13296–13300, Oct. 2016, doi: 10.1002/anie.201607405. DOI: https://doi.org/10.1002/anie.201607405

[53] S. Fan, Li, X. Wang, C. Gua and J. Tu, “Metal oxide/hydroxide-based materials for supercapacitors,” RSC Adv., vol. 4, no. 79, pp. 41910–41921, Aug. 2014, doi: 10.1039/C4RA06136E. DOI: https://doi.org/10.1039/C4RA06136E

[54] L. M. Mallard, M. A. Pimenta, G. Dresselhaus and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep., vol. 473, no. 5–6, pp. 51–87, Apr. 2009, doi: 10.1016/j.physrep.2009.02.003. DOI: https://doi.org/10.1016/j.physrep.2009.02.003

[55] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, pp. 183–191, Mar. 2007, doi: 10.1038/nmat1849. DOI: https://doi.org/10.1038/nmat1849

[56] L. M. Viculis, J. J. Mack and R. B. Kaner, “A Chemical Route to Carbon Nanoscrolls,” Sci., vol. 299, no. 5611, p. 1361, Feb. 2003, doi: 10.1126/science.1078842. DOI: https://doi.org/10.1126/science.1078842

[57] C. Berger et al., “Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics,” J. Phys. Chem. B, vol. 108, no. 52, p. 19912–19916, Dec. 2004, doi: 10.1021/jp040650f. DOI: https://doi.org/10.1021/jp040650f

[58] T. A. Land, T. Michely, R. J. Behm, J. C. Hemminger and G. Comsa, “STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition,” Surf. Sci., vol. 264, no. 3, pp. 261–270, Mar. 1992, doi: 10.1016/0039-6028(92)90183-7. DOI: https://doi.org/10.1016/0039-6028(92)90183-7

[59] D. Chen, H. Feng and J. Li, “Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications,” Chem. Rev., vol. 112, no. 11, pp. 6027–6053, Aug. 2012, doi: 10.1021/cr300115g. DOI: https://doi.org/10.1021/cr300115g

[60] A. Ambrosi, C. K. Chua, A. Bonanni and M. Pumera, “Electrochemistry of Graphene and Related Materials,” Chem. Rev., vol. 114, no. 14, pp. 7150–7188, Jun. 2014, doi: 10.1021/cr500023c. DOI: https://doi.org/10.1021/cr500023c

[61] K. S. Novoselov et al., “Electric Field Effect in Atomically Thin Carbon Films,” Sci., vol. 306, no. 5696, pp. 666–669, Oct. 2004, doi: 10.1126/science.1102896. DOI: https://doi.org/10.1126/science.1102896

[62] Z. Sun and Y. H. Hu, “How Magical is Magic-Angle Graphene?,” Matter, vol. 2, no. 5, pp. 1106–1114, May 2020, doi: 10.1016/j.matt.2020.03.010. DOI: https://doi.org/10.1016/j.matt.2020.03.010

[63] Y. Fei, S. Fang and Y. H. Hu, “Synthesis, properties and potential applications of hydrogenated graphene,” Chem. Eng. J., vol. 397, p. 125408, Oct. 2020, doi: 10.1016/j.cej.2020.125408. DOI: https://doi.org/10.1016/j.cej.2020.125408

[64] Z. Sun, S. Fang and Y. H. Hu, “3D Graphene Materials: From Understanding to Design and Synthesis Control,” Chem. Rev., vol. 120, no. 18, pp. 10336–10453, Aug. 2020, doi: 10.1021/acs.chemrev.0c00083. DOI: https://doi.org/10.1021/acs.chemrev.0c00083

[65] H. Sun et al., “Hierarchical 3D electrodes for electrochemical energy storage,” Nat. Rev. Mater., vol. 4, no. 1, pp. 45–60, Dec. 2018, doi: 10.1038/s41578-018-0069-9. DOI: https://doi.org/10.1038/s41578-018-0069-9

[66] C. Deepa, L. Rajeshkumar and M. Ramesh, “Preparation, synthesis, properties and characterization of graphene-based 2D nano-materials for biosensors and bioelectronics,” J. Mater. Res. Technol., vol. 19, pp. 2657–2694, Aug. 2022, doi: 10.1016/j.jmrt.2022.06.023. DOI: https://doi.org/10.1016/j.jmrt.2022.06.023

[67] J. Lee, S. Noh, N. D. Pham and J. H. Shim, “Top-down synthesis of S-doped graphene nanosheets by electrochemical exfoliation of graphite: Metal-free bifunctional catalysts for oxygen reduction and evolution reactions,” Electrochim. Acta, vol. 313, pp. 1–9, Aug. 2012, doi: 10.1016/j.electacta.2019.05.015. DOI: https://doi.org/10.1016/j.electacta.2019.05.015

[68] V. B. Mbayachi, E. Ndayiragije, T. Sammani, S. Taj and E. R. Mbuta and A. Ullah Khan, “Graphene synthesis, characterization and its applications: A review,” Res. Chem., vol. 3, p. 100163, Jan. 2021, doi: 10.1016/j.rechem.2021.100163. DOI: https://doi.org/10.1016/j.rechem.2021.100163

[69] R. M. Obodo et al., “Optimization of MnO2, NiO and MnO2@ NiO electrodes using graphene oxide for supercapacitor applications,” Curr. Res. Green Sustain. Chem., vol. 5, p. 100345, 2022, doi: 10.1016/j.crgsc.2022.100345. DOI: https://doi.org/10.1016/j.crgsc.2022.100345

[70] B. P. Vinayan, R. Nagar, N. Rajalakshmi and S. Ramaprabhu, “Novel Platinum–Cobalt Alloy Nanoparticles Dispersed on Nitrogen-Doped Graphene as a Cathode Electrocatalyst for PEMFC Applications,” Adv. Funct. Mater., vol. 22, no. 16, pp. 3519–3526, Aug. 2012, doi: 10.1002/adfm.201102544. DOI: https://doi.org/10.1002/adfm.201102544

[71] Y. Liang et al., “Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction,” Nature Mater., vol. 10, pp. 780–786, Aug. 2011, doi: 10.1038/nmat3087. DOI: https://doi.org/10.1038/nmat3087

[72] Y. Zhou et al., “Making ultrafine and highly-dispersive multimetallic nanoparticles in three-dimensional graphene with supercritical fluid as excellent electrocatalyst for oxygen reduction reaction,” J. Mater. Chem. A, vol. 4, no. 47, pp. 18628–18638, 2016, doi: 10.1039/C6TA08508C. DOI: https://doi.org/10.1039/C6TA08508C

[73] Y. Li et al., “Porous graphene doped with Fe/N/S and incorporating Fe3O4 nanoparticles for efficient oxygen reduction,” Catal. Sci. Technol., vol. 8, no. 20, pp. 5325–5333, 2018, doi: 10.1039/C8CY01328D. DOI: https://doi.org/10.1039/C8CY01328D

[74] X. H. Yan, R. Wu, J. B. Xu, Z. Luo and T. S. Zhao, “A monolayer graphene-Nafion sandwich membrane for direct methanol fuel cells,” J. Power Sources, vol. 311, pp. 188–194, Apr. 2016, doi: 10.1016/j.jpowsour.2016.02.030. DOI: https://doi.org/10.1016/j.jpowsour.2016.02.030

[75] S. M. Holmes et al., “2D Crystals Significantly Enhance the Performance of a Working Fuel Cell,” Adv. Energy Mater., vol. 7, no. 5, p. 1601216, Mar. 2017, doi: 10.1002/aenm.201601216. DOI: https://doi.org/10.1002/aenm.201601216

[76] H. Su and Y. H. Hu, “Recent advances in graphene-based materials for fuel cell applications,” Energy Sci. Eng., vol. 9, no. 7, pp. 958–983, Jul. 2021, doi: 10.1002/ese3.833. DOI: https://doi.org/10.1002/ese3.833

[77] Q. Zhang and J. Guan, “Single-Atom Catalysts for Electrocatalytic Applications,” Adv. Funct. Mater., vol. 30, no. 31, p. 2000768, Aug. 2020, doi: 10.1002/adfm.202000768. DOI: https://doi.org/10.1002/adfm.202000768

[78] W. Gao et al., “Ozonated Graphene Oxide Film as a Proton-Exchange Membrane,” Angew. Chem. Int. Ed. Engl., vol. 53, no. 14, pp. 3588–3593, Apr. 2014, doi: 10.1002/anie.201310908. DOI: https://doi.org/10.1002/anie.201310908

[79] L. Yang et al., “Carbon-Based Metal-Free ORR Electrocatalysts for Fuel Cells: Past, Present, and Future,” Adv. Mater., vol. 31, no. 13, p. 1804799, Mar. 2019, doi: 10.1002/adma.201804799. DOI: https://doi.org/10.1002/adma.201804799

[80] L. Qu, Y. Liu, J. B. Baek and L. Dai, “Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells,” ACS Nano, vol. 4, no. 3, pp. 1321–1326, Feb. 2010, doi: 10.1021/nn901850u. DOI: https://doi.org/10.1021/nn901850u

[81] J. Sun et al., “Ultrathin Nitrogen-Doped Holey Carbon@Graphene Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions in Alkaline and Acidic Media,” Angew. Chem. Int. Ed. Engl., vol. 57, no. 50, pp. 16511–16515, Dec. 2018, doi: 10.1002/anie.201811573. DOI: https://doi.org/10.1002/anie.201811573

[82] X. Mao, G. Kour, C. Yan, Z. Zhu and A. Du, “Single Transition Metal Atom-Doped Graphene Supported on a Nickel Substrate: Enhanced Oxygen Reduction Reactions Modulated by Electron Coupling,” J. Phys. Chem. C, vol. 123, no. 6, pp. 3703–3710, Jan. 2019, doi: 10.1021/acs.jpcc.8b12193. DOI: https://doi.org/10.1021/acs.jpcc.8b12193

[83] D. Geng et al., “High oxygen-reduction activity and durability of nitrogen-doped graphene,” Energy Environ. Sci., vol. 4, no. 3, p. 760, 2011, doi: 10.1039/c0ee00326c. DOI: https://doi.org/10.1039/c0ee00326c

[84] L. Lai et al., “Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction,” Energy Environ. Sci., vol. 5, no. 7, pp. 7936–7942, 2012, doi: 10.1039/c2ee21802j. DOI: https://doi.org/10.1039/c2ee21802j

[85] J. Wu et al., “Nitrogen-Doped Graphene with Pyridinic Dominance as a Highly Active and Stable Electrocatalyst for Oxygen Reduction,” ACS Appl. Mater. Interfaces, vol. 7, no. 27, pp. 14763–14769, Jun. 2015, doi: 10.1021/acsami.5b02902. DOI: https://doi.org/10.1021/acsami.5b02902

[86] D. H. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo and J. Nakamura, “Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts,” Sci., vol. 351, no. 6271, pp. 361–365, Jan. 2016, doi: 10.1126/science.aad0832. DOI: https://doi.org/10.1126/science.aad0832

[87] A. Zitolo et al., “Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials,” Nat. Mater., vol. 14, no. 9, pp. 937–942, Aug. 2015, doi: 10.1038/nmat4367. DOI: https://doi.org/10.1038/nmat4367

[88] Z. Yang et al., “Sulfur-Doped Graphene as an Efficient Metal-free Cathode Catalyst for Oxygen Reduction,” ACS Nano, vol. 6, no. 1, pp. 205–211, Dec. 2012, doi: 10.1021/nn203393d. DOI: https://doi.org/10.1021/nn203393d

[89] G. L. Chai, K. Qiu, M. Qiao, M. M. Titirici, C. Shang and Z. Guo, “Active sites engineering leads to exceptional ORR and OER bifunctionality in P,N Co-doped graphene frameworks,” Energy Environ. Sci., vol. 10, no. 5, pp. 1186–1195, 2017, doi: 10.1039/C6EE03446B. DOI: https://doi.org/10.1039/C6EE03446B

[90] M. A. Molina-García and N. V. Rees, “’Metal-free’ electrocatalysis: Quaternary-doped graphene and the alkaline oxygen reduction reaction,” Appl. Catal. A, vol. 553, pp. 107–116, Mar. 2018, doi: 10.1016/j.apcata.2017.12.014. DOI: https://doi.org/10.1016/j.apcata.2017.12.014

[91] H. Lin et al., “Boron, nitrogen, and phosphorous ternary doped graphene aerogel with hierarchically porous structures as highly efficient electrocatalysts for oxygen reduction reaction,” New J. Chem., vol. 40, no. 7, pp. 6022–6029, 2016, doi: 10.1039/C5NJ03390J. DOI: https://doi.org/10.1039/C5NJ03390J

[92] Y. Shao, Z. Jiang, Q. Zhang and J. Guan, “Progress in Nonmetal-Doped Graphene Electrocatalysts for the Oxygen Reduction Reaction,” ChemSusChem, vol. 12, no. 10, pp. 2133–2146, May 2019, doi: 10.1002/cssc.201900060. DOI: https://doi.org/10.1002/cssc.201900060

[93] R. M. Obodo et al., “Influence of pH and annealing on the optical and electrochemical properties of cobalt (III) oxide (Co3O4) thin films,” Surf. Interfaces, vol. 16, pp. 114–119, Sept. 2019, doi: 10.1016/j.surfin.2019.05.006. DOI: https://doi.org/10.1016/j.surfin.2019.05.006

[94] B. Das, S. Sagnik Das, S. Tewary, S. Bose, S. Ghosh and A. Ghosh, “Graphene Nanosheets for Fuel Cell Application,” in Advances in Nanosheets—Preparation, Properties and Applications, K. Krishnamoorthy, Ed., IntechOpen, 2023, pp. 1–17, doi: 10.5772/intechopen.1001838. DOI: https://doi.org/10.5772/intechopen.1001838

[95] A. Ali and P. K. Shen, “Recent Progress in Graphene-Based Nanostructured Electrocatalysts for Overall Water Splitting,” Electrochem. Energy Rev., vol. 3, pp. 370–394, May 2020, doi: 10.1007/s41918-020-00066-3. DOI: https://doi.org/10.1007/s41918-020-00066-3

[96] X. K. Kong, C. L. Chen and Q. W. Chen, “Doped graphene for metal-free catalysis,” Chem. Soc. Rev., vol. 43, no. 8, pp. 2841–2857, 2014, doi: 10.1039/C3CS60401B. DOI: https://doi.org/10.1039/C3CS60401B

[97] X. Qiu, T. Dong, M. Ueda, X. Zhang and L. Wang, “Sulfonated reduced graphene oxide as a conductive layer in sulfonated poly(ether ether ketone) nanocomposite membranes,” J. Membr. Sci., vol. 524, pp. 663–672, Feb. 2017, doi: 10.1016/j.memsci.2016.11.064. DOI: https://doi.org/10.1016/j.memsci.2016.11.064

[98] M. Perez-Page, M. Sahoo and S. M. Holmes, “Single Layer 2D Crystals for Electrochemical Applications of Ion Exchange Membranes and Hydrogen Evolution Catalysts,” Adv. Mater. Interfaces, vol. 6, no. 7, p. 1801838, 2019, doi: 10.1002/admi.201801838. DOI: https://doi.org/10.1002/admi.201801838

[99] Y. Liu, L. Min, W. Zhang and Y. Wang, “High-Performance Graphene Coating on Titanium Bipolar plates in Fuel Cells via Cathodic Electrophoretic Deposition,” Coatings, vol. 11, no. 4, p. 437, Apr. 2021, doi: 10.3390/coatings11040437. DOI: https://doi.org/10.3390/coatings11040437

[100] R. Plengudomkit, M. Okhawilai and S. Rimdusit, “Highly filled graphene-benzoxazine composites as bipolar plates in fuel cell applications,” Polym. Compos., vol. 37, no. 6, pp. 1715–1727, Jun. 2016, doi: 10.1002/pc.23344. DOI: https://doi.org/10.1002/pc.23344

[101] L. Jiang, J. A. Syed, H. Lu and X. Meng, “In-situ electrodeposition of conductive polypyrrole-graphene oxide composite coating for corrosion protection of 304SS bipolar plates,” J. Alloys. Compd, vol. 770, pp. 35–47, Jan. 2019, doi: 10.1016/j.jallcom.2018.07.277. DOI: https://doi.org/10.1016/j.jallcom.2018.07.277

[102] V. Mišković-Stanković, I. Jevremović, I. Jung and K. Rhee, “Electrochemical study of corrosion behavior of graphene coatings on copper and aluminum in a chloride solution,” Carbon, vol. 75, pp. 335–344, Aug. 2014, doi: 10.1016/j.carbon.2014.04.012. DOI: https://doi.org/10.1016/j.carbon.2014.04.012

[103] N. W. Pu et al., “Graphene grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates,” J. Power Sources, vol. 282, pp. 248–256, May 2015, doi: 10.1016/j.jpowsour.2015.02.055. DOI: https://doi.org/10.1016/j.jpowsour.2015.02.055

[104] Y. Sim et al., “Formation of 3D graphene–Ni foam heterostructures with enhanced performance and durability for bipolar plates in a polymer electrolyte membrane fuel cell,” J. Mater. Chem. A., vol. 6, no. 4, pp. 1504–1512, 2018, doi: 10.1039/C7TA07598G. DOI: https://doi.org/10.1039/C7TA07598G

[105] H. Tateishi et al., “Graphene Oxide Fuel Cell,” J. Electrochem. Soc., vol. 160, no. 11, pp. F1175–F1178, Sept. 2013, doi: 10.1149/2.008311jes. DOI: https://doi.org/10.1149/2.008311jes

[106] H. Ren, H. Tian, C. L. Gardner, T. L. Ren and J. Chae, “A miniaturized microbial fuel cell with three-dimensional graphene macroporous scaffold anode demonstrating a record power density of over 10 000 W m−3,” Nanoscale, vol. 8, no. 6, pp. 3539–3547, 2016, doi: 10.1039/C5NR07267K. DOI: https://doi.org/10.1039/C5NR07267K

[107] F. Ren et al., “Clean Method for the Synthesis of Reduced Graphene Oxide-Supported PtPd Alloys with High Electrocatalytic Activity for Ethanol Oxidation in Alkaline Medium,” ACS Appl. Mater. Interfaces, vol. 6, no. 5, pp. 3607–3614, Jan. 2014, doi: 10.1021/am405846h. DOI: https://doi.org/10.1021/am405846h

[108] K. Zhang, L. L. Zhang, X. Zhao and J. Wu, “Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes,” Chem. Mater., vol. 22, no. 4, pp. 1392–1401, Jan. 2010, doi: 10.1021/cm902876u. DOI: https://doi.org/10.1021/cm902876u

[109] E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura and I. Honma, “Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface,” Nano Lett., vol. 9, no. 6, pp. 2255–2259, Apr. 2009, doi: 10.1021/nl900397t. DOI: https://doi.org/10.1021/nl900397t

[110] I. Y. Jeon et al., “Edge-Selectively Sulfurized Graphene Nanoplatelets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect,” Adv. Mater., vol. 25, no. 42, pp. 6138–6145, Nov. 2013, doi: 10.1002/adma.201302753. DOI: https://doi.org/10.1002/adma.201302753

[111] C. Zhang et al., “ Single-Atomic Ruthenium Catalytic Sites on Nitrogen-Doped Graphene for Oxygen Reduction Reaction in Acidic Medium,” ACS Nano, vol. 11, no. 7, pp. 6930–6941, Jun. 2017, doi: 10.1021/acsnano.7b02148. DOI: https://doi.org/10.1021/acsnano.7b02148

[112] A. Ambrosi et al., “Graphene and its electrochemistry—an update,” Chem. Soc. Rev., vol. 45, no. 9, pp. 2458–2493, 2016, doi: 10.1039/C6CS00136J. DOI: https://doi.org/10.1039/C6CS00136J

[113] L. Chang, D. J. Stacchiola and Y. H. Hu, “An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance,” ACS Appl. Mater. Interfaces, vol. 9, no. 29, pp. 24655–24661, Jul. 2017, doi: 10.1021/acsami.7b07381. DOI: https://doi.org/10.1021/acsami.7b07381

[114] M. Matsumoto, Y. Saito, C. Park, T. Fukushima and T. Aida, “Ultrahigh-throughput exfoliation of graphite into pristine ‘single-layer’ graphene using microwaves and molecularly engineered ionic liquids,” Nat. Chem., vol. 7, no. 9, pp. 730–736, Aug. 2015, doi: 10.1038/nchem.2315. DOI: https://doi.org/10.1038/nchem.2315

[115] Y. Xu, K. Sheng, C. Li and G. Shi, “Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process,” ACS Nano, vol. 4, no. 7, pp. 4324–4330, Jun. 2010, doi: 10.1021/nn101187z. DOI: https://doi.org/10.1021/nn101187z

[116] D. Voiry et al., “High-quality graphene via microwave reduction of solution-exfoliated graphene oxide,” Sci., vol. 353, no. 6306, pp. 1413–1416, Sept. 2016, doi: 10.1126/science.aah3398. DOI: https://doi.org/10.1126/science.aah3398

[117] S. Fang, Y. Lin and Y. H. Hu, “Recent Advances in Green, Safe, and Fast Production of Graphene Oxide via Electrochemical Approaches,” ACS Sustain. Chem. Eng., vol. 7, no. 15, pp. 12671–12681, Jul. 2019, doi: 10.1021/acssuschemeng.9b02794. DOI: https://doi.org/10.1021/acssuschemeng.9b02794

[118] X. Li et al., “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Sci., vol. 324, no. 5932, pp. 1312–1314, May 2009, doi: 10.1126/science.1171245. DOI: https://doi.org/10.1126/science.1171245

[119] H. Wang, K. Sun, F. Tao, D. J. Stacchiola and Y. H. Hu, “3D Honeycomb-Like Structured Graphene and Its High Efficiency as a Counter-Electrode Catalyst for Dye-Sensitized Solar Cells,” Angew. Chem. Int. Ed. Engl., vol. 52, no. 35, pp. 9210–9214, Aug. 2013, doi: 10.1002/anie.201303497. DOI: https://doi.org/10.1002/anie.201303497

[120] G. Leonzio, “Methanol Synthesis: Optimal Solution for a Better Efficiency of the Process,” Processes, vol. 6, no. 3, Feb. 2018, doi: 10.3390/pr6030020. DOI: https://doi.org/10.3390/pr6030020

[121] H. W. M. Madej-Lachowska, A. Kasprzyk-Mrzyk and H. Moroz, “Methanol Synthesis from Carbon Dioxide and Hydrogen over CuO/ZnO/ZrO2 promoted catalysts,” Chemik, vol. 68, no. 1, pp. 61–68, 2014.

[122] G. A. Olah, A. Goeppert and G. K. S. Prakash, “Chemical Recycling of Carbon Dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons,” J. Org. Chem., vol. 74, no. 2, pp. 487–498, 2009, doi: 10.1021/jo801260f. DOI: https://doi.org/10.1021/jo801260f

[123] M. Taljegård et al., “Electrofuels—A Possibility for Shipping in a Low Carbon Future?,” presented at the Int. Conf. on Shipping in Changing Climates, Glasgow, Scotland, 2015.

[124] M. Rivarolo, D. Bellotti, L. Magistri and A. F. Massardo, “Feasibility study of methanol production from different renewable sources and thermo-economic analysis,” Int. J. Hydrogen Energy, vol. 41, no. 4, pp. 2105–2116, Jan. 2016, doi: 10.1016/j.ijhydene.2015.12.128. DOI: https://doi.org/10.1016/j.ijhydene.2015.12.128

[125] R. Kajaste, M. Hurme and P. Oinas, “Methanol-Managing greenhouse gas emissions in the production chain by optimizing the resource base,” AIMS Energy, vol. 6, no. 6, pp. 1074–1102, Dec. 2018, doi: 10.3934/energy.2018.6.1074. DOI: https://doi.org/10.3934/energy.2018.6.1074

[126] M. Noussan, P. P. Raimondi, R. Scita and M. Hafner, “The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective,” Sustainability, vol. 13, no. 1, pp. 1–26, 2021, doi: 10.3390/su13010298. DOI: https://doi.org/10.3390/su13010298

[127] H. Stancin, H. MikuIcic, X. Wang and N. Duic, “A review on alternative fuels in future energy system,” Renew. Sustain. Energy Rev., vol. 128, p. 128, Aug. 2020, doi: 10.1016/j.rser.2020.109927. DOI: https://doi.org/10.1016/j.rser.2020.109927

[128] E. R. Morgan, J. F. Manwell and J. G. McGowan, “Sustainable Ammonia Production from U.S. Offshore Wind Farms: A Techno-Economic Review,” ACS Sustain. Chem. Eng., vol. 5, no. 11, pp. 9554–9567, Oct. 2017, doi: 10.1021/acssuschemeng.7b02070. DOI: https://doi.org/10.1021/acssuschemeng.7b02070

[129] M. Matzen, M. Alhajji and Y. Demirel, “Technoeconomics and Sustainability of Renewable Methanol and Ammonia Productions Using Wind Power-based Hydrogen,” J. Adv. Chem. Eng., vol. 5, no. 3, 2015, doi: 10.4172/2090-4568.1000128. DOI: https://doi.org/10.4172/2090-4568.1000128

[130] K. H. R. Rouwenhorst, Y. Engelmann, K. Veer, R. S. Postma, A. Bogaerts and L. Lefferts, “Plasma-driven catalysis: green ammonia synthesis with intermittent electricity,” Green Chem., vol. 22, no. 19, pp. 6258–6287, 2020, doi: 10.1039/D0GC02058C. DOI: https://doi.org/10.1039/D0GC02058C

[131] G. C. Funez, L. Reyes-Bozo, E. Vyhmeister, C. M. Jaen, J. L. Salazar and C. Clemente-Jul, “Technical-economic analysis for a green ammonia production plant in Chile and its subsequent transport to Japan,” Renew. Energy, vol. 157, pp. 404–414, Sept. 2020, doi: 10.1016/j.renene.2020.05.041. DOI: https://doi.org/10.1016/j.renene.2020.05.041

[132] R. M. Obodo et al., “Improving the Supercapacitive Performance of Nanoengineered Co3O4@Mn3O4@NiO/MXene Electrode Using Ion Beam Implantation,” J. Mater. Eng. Perform., Dec. 2024, doi: 10.1007/s11665-024-10570-y. DOI: https://doi.org/10.1007/s11665-024-10570-y

[133] F. Mohammad, “Chapter 13—Ammonia production from syngas: Plant design and simulation,” Advances in Synthesis Gas: Methods, Technologies and Applications. Volume 4: Syngas Process Modelling and Apparatus Simulation, Elsevier, 2023, pp. 381–399, doi: 10.1016/B978-0-323-91879-4.00012-6. DOI: https://doi.org/10.1016/B978-0-323-91879-4.00012-6

[134] P. Yanuandri and L. Ocktaeck, “Dimethyl Ether as the Next Generation Fuel to Control Nitrogen Oxides and Particulate Matter Emissions from Internal Combustion Engines: A Review,” ACS Omega, vol. 7, pp. 32−37, Dec. 2022, doi: 10.1021/acsomega.1c03885. DOI: https://doi.org/10.1021/acsomega.1c03885

[135] Y. Yan, Z. Yu-Sheng, C. Yong-Tian, C. Zu-Di and X. Ge, “Study on HCCI Combustion and Emission Characteristics of Diesel Engine Fueled with Methanol/DME,” SAE Tech. Pap. Ser., Jan. 2010, doi: 10.4271/2010-01-0578. DOI: https://doi.org/10.4271/2010-01-0578

[136] Z. Azizi, M. Rezaeimanesh, T. Tohidian and M. R. Rahimpour, “Dimethyl Ether: A Review of Technologies and Production Challenges,” Chem. Eng. Process, vol. 82, pp. 150−172, Aug. 2014, doi: 10.1016/j.cep.2014.06.007. DOI: https://doi.org/10.1016/j.cep.2014.06.007

[137] K. Cung and S. Lee, “Numerical Study on Emission Characteristics of High-Pressure Dimethyl Ether (DME) under Different Engine Ambient Conditions,” SAE Tech. Pap. Ser., Jan. 2013, doi: 10.4271/2013-01-0319. DOI: https://doi.org/10.4271/2013-01-0319

[138] D. Lee, “Spray Characteristics of DME-LPG Blended Fuel in a High-Pressure Diesel Injection System,” SAE Tech. Pap. Ser., Jan. 2013, doi: 10.4271/2013-01-0105. DOI: https://doi.org/10.4271/2013-01-0105

[139] S. Bhattacharya, K. B. Kabir and K. Hein, “Dimethyl ether synthesis from Victorian brown coal through gasification—Current status, and research and development needs,” Prog. Energy Combust. Sci., vol. 39, no. 6, p. 577−605, Dec. 2013, doi: 10.1016/j.pecs.2013.06.003. DOI: https://doi.org/10.1016/j.pecs.2013.06.003

[140] C. Arcoumanis, C. Bae, R. Crookes and E. Kinoshita, “The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review,” Fuel, vol. 87, no. 7, pp. 1014−1030, 2008, doi: 10.1016/j.fuel.2007.06.007. DOI: https://doi.org/10.1016/j.fuel.2007.06.007

[141] W. Chen, B. Lin, H. Lee and M. Huang, “One-step synthesis of dimethyl ether from the gas mixture containing CO2 with high space velocity,” Appl. Energy, vol. 98, pp. 92−101, Oct. 2012, doi: 10.1016/j.apenergy.2012.02.082. DOI: https://doi.org/10.1016/j.apenergy.2012.02.082

[142] S. Xu, Y. Wang, X. Zhang, X. Zhen and C. Tao, “Development of a novel common-rail type Dimethyl ether (DME) injector,” Appl. Energy, vol. 94, pp. 1−12, Jun. 2012, doi: 10.1016/j.apenergy.2012.01.030. DOI: https://doi.org/10.1016/j.apenergy.2012.01.030

[143] J. Yu, Y. Zhang, G. Jiang and Q. Kui, “An Experimental Study on Steady Flash Boiling Spray Characteristics of DME/Diesel Blended,” SAE Tech. Pap. Ser., Jan. 2010, doi: 10.4271/2010-01-0879. DOI: https://doi.org/10.4271/2010-01-0879

[144] T. D. Pedersen and J. Schramm, “Reduction of HCCI Combustion Noise Through Piston Crown Design,” SAE Tech. Pap. Ser., Jan. 2010, doi: 10.4271/2010-01-1487. DOI: https://doi.org/10.4271/2010-01-1487

[145] L. Guerra, S. Rossi, J. Rodrigues, J. Gomes, J. Puna and M. T. Santos, “Methane production by a combined Sabatier reaction/water electrolysis process,” J. Environ. Chem. Eng., vol. 6, no. 1, pp. 671–676, Feb. 2018, doi: 10.1016/j.jece.2017.12.066. DOI: https://doi.org/10.1016/j.jece.2017.12.066

[146] J. Huang, B. Mendoza, J. S. Daniel, C. J. Nielsen, L. Rotstayn and O. Wild, “Anthropogenic and Natural Radiative Forcing,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge, United Kingdom: Cambridge University Press, 2013, pp. 659–740. DOI: https://doi.org/10.1017/CBO9781107415324.018

[147] G. Leonzio, “Process analysis of biological Sabatier reaction for bio-methane production,” Chem. Eng. J., vol. 290, pp. 490–498, Apr. 2016, doi: 10.1016/j.cej.2016.01.068. DOI: https://doi.org/10.1016/j.cej.2016.01.068

[148] L. Wang et al., “Power-to-methane via co-electrolysis of H2O and CO2: The effects of pressurized operation and internal methanation,” Appl. Energy, vol. 250, pp. 1432–1445, Sept. 2019, doi: 10.1016/j.apenergy.2019.05.098. DOI: https://doi.org/10.1016/j.apenergy.2019.05.098

[149] B. R. de Vasconcelos and J. M. Lavoie, “Recent Advances in Power-to-X Technology for the Production of Fuels and Chemicals,” Front. Chem., vol. 7, pp. 1–24, Jun. 2019, doi: 10.3389/fchem.2019.00392. DOI: https://doi.org/10.3389/fchem.2019.00392

[150] A. Nemmour, A. Inayat, I. Janajreh and C. Ghenai, “Green hydrogen-based E-fuels (E-methane, E-methanol, E-ammonia) to support clean energy transition: A literature review,” Int. J. Hydrogen Energy, vol. 48, no. 75, pp. 29011–29033, Sept. 2023, doi: 10.1016/j.ijhydene.2023.03.240. DOI: https://doi.org/10.1016/j.ijhydene.2023.03.240

[151] S. Bube, N. Nils Bullerdiek, S. Voß and M. Kaltschmitt, “Kerosene production from power-based syngas—A technical comparison of the Fischer-Tropsch and methanol pathway,” Fuel, vol. 366, p. 131269, Jun. 2024, doi: 10.1016/j.fuel.2024.131269. DOI: https://doi.org/10.1016/j.fuel.2024.131269

[152] E. Corrao et al., “CO2 conversion into hydrocarbons via modified Fischer-Tropsch synthesis by using bulk iron catalysts combined with zeolites,” Chem. Eng. Res. Des., vol. 197, p. 449–465, Sept. 2023, doi: 10.1016/j.cherd.2023.07.052. DOI: https://doi.org/10.1016/j.cherd.2023.07.052

[153] A. Buttler and H. Spliethoff, “Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review,” Renew. Sustain. Energy Rev., vol. 82, pp. 2440–2454, Feb. 2018, doi: 10.1016/j.rser.2017.09.003. DOI: https://doi.org/10.1016/j.rser.2017.09.003

[154] V. Dieterich, A. Buttler, A. Hanel, H. Spliethoff and S. Fendt, “Power-to-liquid via synthesis of methanol, DME or Fischer–Tropsch-fuels: a review,” Energy Environ. Sci, vol. 13, no. 10, pp. 3207–3252, 2020, doi: 10.1039/D0EE01187H. DOI: https://doi.org/10.1039/D0EE01187H

[155] C. Panzone, R. Philippe, A. Chappaz, P. Fongarland and A. Bengaouer, “Power-to-Liquid catalytic CO2 valorization into fuels and chemicals: Focus on the Fischer-Tropsch route,” J. CO2 Util., vol. 38, pp. 314–347, May 2020, doi: 10.1016/j.jcou.2020.02.009. DOI: https://doi.org/10.1016/j.jcou.2020.02.009

[156] J. Wei et al., “Directly converting CO2 into a gasoline fuel,” Nat. Commun., vol. 8, p. 15174, May 2017, doi: 10.1038/ncomms15174. DOI: https://doi.org/10.1038/ncomms15174

[157] J. N. Udeh et al., “Investigating the properties of cobalt phosphate nanoparticles synthesized by co-precipitation method,” Asian J. Nano. Mater., vol. 5, no. 1, pp. 22–35, 2022, https://www.sid.ir/paper/1144048/en.

Downloads

Published

2024-12-31

How to Cite

[1]
R. M. Obodo, “Prospects of Graphene-Based Materials in E-Fuel Applications”, NH, vol. 3, p. 44 pages, Dec. 2024.

Issue

Section

Articles